Washington, Feb. 11 ANI | 10 months ago

Researchers have said that they have discovered a biological switch that regulates a protein that causes fatty liver disease in mice.

Peter Espenshade, Ph.D., professor of cell biology at the Johns Hopkins University School of Medicine, explains that fats, which include cholesterol, are essential to the life of organisms, but too much can sabotage systems that rid the body of toxins and regulate hormones, among other functions.

Crucial to the right balance of fats is a family of proteins called sterol regulatory element-binding proteins (SREBPs), which turn on fat-making genes when fat levels in cells are low.

SREBPs are made and embedded in the membrane of the cellular compartment called the endoplasmic reticulum, or ER. To get to the cell's nucleus to turn on genes, the business end of SREBPs has to be clipped away from the membrane.

Two different proteins, S1P and S2P, make those clips in sequence. But S1P and S2P live in a different cellular compartment, known as the Golgi.

To safely make the trip to the Golgi, says Espenshade, cells give each SREBP a chauffeur aEuro" the protein SCAP aEuro" which binds to SREBP before they both make their way to the Golgi. Once there, S1P and S2P free SREBP from the membrane so that it can move to the nucleus.

While testing a chemical inhibitor of S1P activity, Espenshade says, he and his team added the chemical to hamster cells and were surprised to find that SCAP disappeared from the cells. That meant that it was either no longer being made or was being broken down somehow.

When they added both the S1P inhibitor and a chemical that prevents SCAP from leaving the ER, SCAP reappeared. This suggested that SCAP was still being made but that the S1P inhibitor was somehow encouraging the destruction of SCAP once SCAP left the safety of home base. Further testing revealed that SCAP was indeed being broken down aEuro" in another part of the cell called the lysosome.

Tweaking the components of the cycle again, they engineered cells to keep SREBP in the ER while allowing SCAP to move to the Golgi on its own. This time, even though S1P was blocked, SCAP was no longer broken down by the lysosome.

The study has been published in the Journal of Biological Chemistry.

(Posted on 11-02-2014)

Share This Page: